
1

The Fireman’s Fund iRise Cookbook

Revision 1.2
Matt Denko

2

Fireman’s Fund iRise Cookbook .. 3
Working with This Cookbook ... 4
General Best Practices ... 5

1. When making more than superficial changes to a project part (e.g., pages,

datasheets, decision branches, etc.), first create a backup copy of the current

page. .. 5
2. If multiple versions of a given project file exist, take steps to ensure you’re

working on the correct version of the file. .. 6
3. Save incremental versions of your project files. ... 7
4. When working strictly on page formatting/layout issues, toggle iRise to Page

Layout View. .. 9
5. When working with large amounts of data, consider using datasheets instead

of clipboard widgets. ... 11
6. Don’t pass data from a single clipboard to multiple views. 14
7. When inserting a single image into multiple projects, first create a master

reference that contains the image. .. 14
8. Leverage masters in other ways to minimize duplicated effort and rework in a

project. ... 14
9. Use nested masters to maximize benefits of both master types, while

eliminating the limitations. ... 16
10. iRise support: your new best friend. ... 16
11. Avoid crossing widget/data flow lines to improve page legibility. 17

iRise Objects and Event Types... 17
Working with Data ... 19

Pass Datasheet Data to a Select Widget .. 19
Using Datasheets as Lookup Tables ... 23
Create a Dynamic Table... 28
Create a Filter to Display a Subset of the Records Contained in a Data Table 34
Save a Record to a Data Sheet ... 42
Update a Datasheet Record .. 50

Performing Calculations and Conversions .. 56
Create a Field That Displays the Current Date .. 56
Create a Field That Adds One to the Year of the Current Date 62

Miscellaneous Routines... 75
Using Show/Hide Widgets as an Alternative to Views 75
Preserving State of Radio Button Settings .. 76

3

Fireman’s Fund iRise Cookbook
This document details a variety of “recipes” that document how to accomplish a

variety of data programming tasks within the iRise environment. The intent is to

create a library of common data manipulation examples, to facilitate re-use and

reduce wasted/duplicated effort when updating iRise project files or when starting a

new iRise project. Note that the recipes in this Cookbook are specific to the 8.5

version of iRise, although most if not all will work in earlier (and possibly later)

versions of iRise as well.

The document is structured to begin with recommended best practices and common,

basic editing tasks, and moves on to more intermediate and advanced simulation

topics. The following topic groupings are covered in this document:

• General Best Practices

• Basic Editing

• Common Formatting Tasks

• Working with Data

• Performing Calculations and Conversions

• Form Validation Routines

This document is not necessarily meant to be read in a linear, sequential sequence:

you can pick or choose “recipes” at random based on your level of interest or current

iRise editing task. A baseline level of proficiency with the iRise application is

required to master the more difficult recipes that appear later in the Cookbook. If

you find yourself challenged by a recipe, you may find valuable hints and tips in

earlier portions of the Cookbook and might benefit by brushing up on these earlier

topics.

While generally geared towards simple editing tasks that don’t always map well to

more complicated real-world examples, the integrated iRise Help (accessible by

clicking your F1 keyboard key while in the Studio environment) does a good job of

introducing new users to the basics of working with the application. Several

additional resources are also available that can greatly help in becoming conversant

with a variety of common iRise tasks:

• Online Tutorials (http://www.irise.com/services/training_elearning.php).

Provide a good starting framework for working with simple tasks using the

application.

• Online Seminars (http://www.irise.com/resources/seminar_center.php)

• Common Sample Files (http://www.irise.com/resources/idoc_library.php).

Make sure to grab the version specific to your current version of iRise.

• iRise Developer Network (signup URL:

http://idn.irise.com/um/signup.action). An online support community that

can help answer many common questions as you’re coming up to speed with

working the with application.

• IRise Support (1.866.361.3900, or support@irise.com). Standard support

hours are from 6:00 am – 6:00 pm Monday through Friday, Pacific Time. A

surprisingly strong support organization; they have saved my bacon more

than once when up against a project deadline. There are only a handful of

support technicians, but they all have solid technical backgrounds, and each

http://www.irise.com/services/training_elearning.php
http://www.irise.com/resources/seminar_center.php
http://www.irise.com/resources/idoc_library.php
http://idn.irise.com/um/signup.action
mailto:support@irise.com

4

have unique strengths working with different aspects of the application. They

will quickly become your new Best Friends.

This document assumes the reader has a solid foundation in working with the

application, and has familiarized himself/herself with the basics covered in the online

Help and has successfully completed at least the following online tutorials:

• iRise Overview

• iRise Explained

Working with This Cookbook
It is recommended that you create a local project in which to work through the

various recipe examples contained within this guide. To do so, complete the

following steps:

1. If not already open, launch iRise Studio on your system.

2. From the File menu, choose New > Project (Blank).

3. In the New Project dialog box, enter a name for your project, then click

Create.

If you plan to work through any of the datasheet examples later in this guide, it is

recommended that you import the sample States datasheet that is included with the

application. This datasheet is in a subdirectory below the root installation directory

of the application (exact location detailed later in the recipe steps).

1. From the tree at the left of iRise Studio, choose New > Datasheet.

2. While the datasheet is still highlighted, type “States” to change the default

name.

3. Select the Datasheet you just created from the tree.

4. Click the Import CSV button at the top of the Datasheet window.

5

5. In the CSV Import From dialog box, navigate to the Sample Datasheets

directory below your iRise installation.

By default, iRise is installed to C:\Program Files\iRise. If you installed to a

different directory, the datasheet samples are stored below the root folder as

follows: \\ installation directory\Studio\Sample Datasheets.

6. Select State.csv, then click Open.

This should display a two-column table within the Studio environment.

General Best Practices
The following section details some high-level recommendations for general best

practices (not presented in any order of importance) when creating an iRise

simulation.

1. When making more than superficial changes to a project part
(e.g., pages, datasheets, decision branches, etc.), first create a

backup copy of the current page.

As page logic becomes more complex, it becomes increasingly easy to accidentally

break routines that had previously worked without hitch. Recreating this page logic

can be quite time consuming without a backup copy to guide your efforts.

To make a backup copy of a project part:

1. From within iRise Studio, right-click the project part that you want to copy from

the project tree, then choose the Copy context menu option.

6

2. Right-click the region within the tree where you want to insert the copied project

part, then choose the Paste context menu option.

2. If multiple versions of a given project file exist, take steps to
ensure you’re working on the correct version of the file.

An important caveat related to the first best practice is taking steps to mitigate

working on the wrong file when performing edits. Make sure to clearly differentiate

the file versions with clearly descriptive label differences that quickly jump out when

viewing the files from the project tree. It is not always sufficient to merely append a

single digit number to the end of a project file – it is extremely easy when caught up

7

in an editing session to get fifteen minutes or so into a series of intensive edits, only

to realize you’re working on the wrong version of the file. Try to build check points

into your workflow to pause and apprise your progress, and to ensure you’re doing

your work in the appropriate file. Undo can help save you to a certain extent, but

not all operations within iRise can be undone, and there does seem to be a limit on

the number of operations that can be undone, particularly if you are jumping back

and forth between multiple files while editing.

3. Save incremental versions of your project files.

IRise project pages quickly become quite complicated, especially if they have

extensive data passing or page logic. Due to the cluttered nature of certain pages

within the iRise Studio environment, it is extremely easy to inadvertently move or

delete objects without realizing what has been done until there is no easy way to

reverse the damage. If you forget to create backup versions of project components

before beginning extensive edits, having an earlier version saved to the Definition

Center or as an iDoc can be a life-saver. Irise automatically saves all edits you make

to a project during an editing session (including ones you might not be aware of), so

having an earlier backup of a known good state allows you to import an earlier state

of one or more project files into the current project.

To save a new version of an iRise project:

1. From within iRise Studio, choose Save As from the File menu.

2. From the Save As dialog box, choose one of the following:

a. To save a local version of the project, choose Private Projects from the

Save In field.

 b. To save a version to the Definition Center, choose Connect to Definition

 Center in Save In, then enter your login credentials in the Definition

 Center Login dialog box.

3. Specify a unique name for the file in the Project Name field, then click Save.

8

To create an iDoc of an iRise project:

1. From within iRise Studio, choose Export > To iDoc from the File menu.

2. In the Export to iDoc dialog box, navigate to the directory location you’d like to

save the file to.

3. Enter a unique name in the File Name field, then choose Save.

To import a project part from another project into the current project:

1. From within iRise Studio, choose Import, then do one of the following:

 a. To import from another project, choose From Another Project.

 b. To import from an iDoc, choose From An iDoc.

2. In the dialog box that is displayed, navigate to the project or iDoc that contains

the project parts you want to import.

3. In the dialog box that is displayed, place check marks next to each project part

that you want to import, then click OK.

9

4. When working strictly on page formatting/layout issues, toggle
iRise to Page Layout View.

The Page Layout View temporarily hides all page logic, displaying only the actual

page widgets that comprise the current page. This can dramatically ease the process

of laying out your pages and decreases the chances of accidental edits that can be

difficult to detect when viewing the page logic controls. Which of these two

document views would you rather perform extensive editing operations on?

10

Figure 1: Page View with Canvas Widgets

11

Figure 2: Page Layout with Canvas Widgets Suppressed

To Toggle Page Layout View on Or Off:

1. Press the F12 key on your keyboard.

5. When working with large amounts of data, consider using
datasheets instead of clipboard widgets.

iRise provides two primary methods of capturing and manipulating user data:

clipboards and datasheets. While initially somewhat trickier to work with and to

grasp conceptually, datasheets offer some distinct advantages that clipboards lack,

the primary one being the ability to collapse linkages to individual page widgets

down to a single line. For example, when working with either clipboards or

datasheets, after your initial pass of hooking individual variables up to specific page

widgets, your editing environment might look something like the following:

12

Figure 3: Clipboard (Top) and Datasheet Canvas Widgets

While simple pages can easily accommodate a small number of

clipboards/datasheets with one or two handfuls of variables mapped to page widgets,

the situation can quickly become overwhelming, making it difficult to perform editing

or formatting operations on the page. As previously described in the Best Practices

section, you can mitigate this difficulty by toggling to Page Layout view. If, however,

you still want to be able to visualize how data is mapped to various regions on the

page, you can collapse your datasheet data lines down to a single line, as depicted in

the following illustration.

13

Figure 4: Datasheet (Bottom) Collapsed

To Collapse Datasheet Logic Down to a Single Line:

1. Right-click on any one line running from the datasheet widget to the page, then

choose the Collapse context menu option.

To Expand a Collapsed Datasheet:

1. Right-click on the collapsed data line, then choose the Expand context menu

option.

14

6. Don’t pass data from a single clipboard to multiple views.

Results are unpredictable – sometimes things work as expected; sometimes not.

When passing data to a control that is contained in more than one view, use

separate clipboards for each view. Note that this suggestion is only applicable when

passing data to analogous control representations in more than one view: a single

clipboard can be used to pass data to multiple containers within a single view space

(for example, data can be passed from a single clipboard to multiple page elements;

to canvas operators; etc.).

7. When inserting a single image into multiple projects, first create a
master reference that contains the image.

I learned the hard way that iRise project files have a limit with respect to file size

and project performance. One evening while preparing to leave for the day, I got a

phone call from a colleague requesting an iDoc of a project for use in a presentation

the next morning. “No problem!” I replied, and as I packed up my belongings to

prepare to head out for the day, I kicked off the operation to output the iDoc.

Normally a fairly quick operation, I picked up the phone to call my colleague after 30

minutes had elapsed and the operation had not completed. When I came in the next

morning the operation had successfully output the file, but I once again started the

export operation to time how long it took. Once again at the 30-minute mark, I

picked up the phone to call iRise support. While still talking with the support

technician, the operation finally completed after approximately 50 minutes.

I learned over the course of that conversation with support that the recommended

ceiling on file sizes is approximately 5MB. The project in question at this point had

bloated to over 12 MB.

In helping to troubleshoot the issue, iRise requested that I forward the bloated file to

them. In looking through the project XML file, iRise noted that the project contained

many thousands of individual file instances. In more closely looking at the XML file,

it soon became evident that many of these instances were duplicates – sometimes

hundreds of instances of the same source file were placed into the project.

The iRise recommendation for cleaning up this mess was to find the most egregious

examples in the project, and capture these as masters. One of the primary benefits

of masters is that they can be used as references within a project. Define the

master reference a single time, and individual instances of the masters inserted into

project files point back to the master. From a file size perspective, if you have a

single 1 MB image that needs to be inserted 100 times into a project, masters result

in a 100 times savings in file size. Rather than having individual instances of the 1

MB file resulting in 100 MB of project file bloat, the individual instances point back to

the single master reference, taking up only 1 MB of file size.

8. Leverage masters in other ways to minimize duplicated effort and
rework in a project.

An important distinction in this discussion is that iRise offers two different master

types, and each is appropriate for different contexts. References behave as

described in the previous best practice recommendation: define the master once,

15

and have individual instances point back to the parent master. iRise also supports

master copies, which behave like individual, single instances, and thus negate the

file size advantage previously discussed. In many cases, however, this is not really a

problem with respect to file size and offers other advantages that reference masters

lack. For example, when working solely with native iRise widgets, file size savings

are negligible (if existent at all) since the internal program logic of iRise is intelligent

enough to internally treat the multiple widget instances in a manner like what was

discussed with respect to external file types such as images. A big benefit of copy

masters is that they don’t limit you to having the same content in each instance.

This is highly useful when defining masters of common page elements, such as

sections are tabular elements that need to expose variable content.

With respect to master references, one other benefit is worth highlighting: when

working with a feature team on rapidly evolving requirements, defining repeatable

project elements a single time in a master reference allows you to iterate the

reference without having to update individual instances across multiple project files.

Update the reference a single time, and those updates are propagated automatically

to all project files that reference that master.

The following sections highlight some of the important distinctions with respect to

the two different master types.

Advantages of Reference Masters

• Minimize project file sizes when working with external (i.e., non-native)

object types

• Reduce rework if a reference project type needs to be updated: the edit is

performed a single time in the master reference, and automatically

propagated to all instances

Disadvantages of Reference Masters

• Because the reference is inserted as a single block into a project page,

individual elements that comprise the reference can not be accessed or

manipulated

o Due to this limitation, actions and data flows cannot be defined at the

page level – they must be built into the master

▪ This limits certain capabilities – any view or other switches

must refer to elements contained in the master. For example,

using a reference master, you can’t define logic to invoke a

view change for a page element that is not contained within the

master without breaking the reference to the parent master.

o If multiple instances of the master have slightly variable content,

either multiple master references for the different permutations must

be defined, or the linkage to the parent master must be broken.

Advantages of Copy Masters

• Ideally suited for situations where individual components of the master need

to vary across multiple project instances

• Allow for greater flexibility in interacting with data and other widgets on

individual project pages

16

Disadvantages of Copy Masters

• Any subsequent edits require updating multiple instances across project files

• Can lead to project bloat if they include external file types such as images

In the next section, we’ll be covering a clever work-around that helps to blend the

good points of both master types, while eliminating the bad.

9. Use nested masters to maximize benefits of both master types,
while eliminating the limitations.

I accidentally stumbled upon a solution that eliminated the problems discussed in the

previous section for both types of masters. While working through the mitigation

steps outlined by iRise for reducing file size in my problem project, I realized that

some of the image instance I was striving to eliminate were contained in multiple

different masters. For example, various message icons appeared across multiple

different project masters. What would happen, I wondered, if I further subdivided

my masters into multiple parts? At the micro building block level, I experimented

with creating masters of the smallest project parts – individual image references for

icons and other small images that were repeated hundreds of times across the

project. I next began creating slightly larger masters that contained references to

the smaller masters – essentially, I began nesting the smallest masters into slightly

larger parents, and the mid-sized masters into still larger ones.

The primary beauty of this approach was that it eliminated the limitations previously

described, while maintaining the advantages of the two types. More specifically, a

nested master could be built up of reference masters pointing to immutable content

such as the project icons and images. These reference masters could then be placed

into copy references for variable elements such as masters of various error

messages. File bloat is avoided by defining reference masters for images and other

sources of external content, while still providing the flexibility to vary content by

placing those elements into a copy reference.

When appropriate, use nested references to maximize benefits while minimizing

drawbacks of the two different reference types.

10. iRise support: your new best friend.

(Phone: 1.866.361.3900, or support@irise.com)

I must confess to a certain stubborn streak in my personality: when confronted with

a problem, I have a bulldog tenacity in attempting to solve it that at times borders

on OCD. This can be both a good and a bad thing. I have realized over time that

there is a point of diminishing returns at which I must admit to myself that I am not

going to solve the problem on my own, at least not without leaving it to stew for a

while in the back chambers of my subconscious. My experience with support

organizations has been spotty at best: while occasionally helpful, oftentimes my

experience has been that I know more about working with the application I’m having

trouble with then the support staff I call when I’m hopelessly stuck.

Thankfully, this is not the case with the iRise support team. While some team

members are stronger than others, all bring unique skills and capabilities to the

table, and all have been helpful in different contexts when grappling with a problem.

mailto:support@irise.com

17

If you take no other advice in this manual to heart other than this one, my

experience has been that after grappling with a problem for more than an hour or

two, it is time to call in reinforcements: pick up the phone and call iRise support.

For newcomers to iRise, there are also strong internal resources available who have

grappled with many of the same issues that you will be as a newcomer to iRise.

Rather than trying to reinvent the wheel, call up one of these resources and have

them walk you through an example they’ve created in the past to solve an actual

design problem relevant to Fireman’s Fund. Some excellent internal resources who

might be able to lend a hand when you run across a thorny iRise prototyping task

include:

• Meri Dreyfuss

• Anna Poznyakov

• Rachel Wahlberg

• Matt Denko

11. Avoid crossing widget/data flow lines to improve page legibility.

In a former work life while a designer for the Autodesk product AutoCAD, I had to

learn a bit of architectural drafting while conducting my design research. It is

considered a standard best practice in drafting disciplines to avoid (where possible)

crossing notational drawing elements such as dimension lines to improve legibility of

drafting documents. Similarly in iRise, pages can quickly become quite complicated

and it greatly improves the readability of iRise pages and helps to visualize data flow

if line crossings are kept to a minimum.

iRise Objects and Event Types
iRise many different events that can trigger actions. In Object Oriented

programming languages, the various components and widgets that make up the

application are referred to as objects, each of which have properties and methods

available to them. The various page widgets that you place within your simulation in

iRise all loosely correspond to the notion of objects exposed in many programming

languages. When you select an object from the page canvas, a Properties Palette

control docked at the left of the application environment displays information about

the currently selected object. In the illustration below, a single text widget is

selected on an iRise page, and the Properties Palette is displaying properties related

to the widget, including the following:

• The name of the widget (Text 1)

• Vertical and horizontal offsets of the widget from a parent container such as a

section (as the widget is not contained within a parent container, these values

are blank)

• The X, Y coordinate location (in pixels) of the object from the origin (0, 0

location) of the page (in other words, the upper left portion of the page,

which begins on the canvas at an assumed position of 0 pixels for both the X

and Y axes)

18

Figure 5: A Few Selected Properties of a Simple Text Widget

Objects also have methods that are available to them. Whereas properties can be

thought of as variable physical characteristics of a given object (for example, the

name of a text widget, or the color or font that comprise how it is rendered on the

page), methods can be thought of as verb-type actions that the object can perform.

For example, button and drop-down widgets usually have corresponding actions that

are associated with them: when you click a button on a web page, you typically

expect that button click to result in some noticeable action: perhaps navigating to

another page within the work-flow, or submitting changes on a web form to a back-

end database. These actions are fundamental methods that are defined in the

object-oriented language and associated with a given object type.

Many programming languages do some of the grunt work involved in predefining a

number of object types, determining what properties these objects expose, and

associating pre-baked methods with the objects. Many objects also expose events,

which trigger an associated action when the event is invoked. In our button

example, the button exposes an onClick event, which can fire off an associated

method that invokes an action when the button is clicked.

While not a true development environment, iRise borrows many elements from

object-oriented programming languages, including exposing several predefined

events for various object types. For example, the parent object in iRise (the page

widget) exposes predefined events, including the following:

• On click – an event that triggers an associated action when the parent object

is clicked using the left mouse button.

• On context menu (right-click) – identical to the On Click event, except the

invoking action is clicking using the right mouse button as opposed to the left.

• On load – an especially powerful event that is only exposed (unfortunately)

for a limited number of object types (pages and masters). The On Load event

is triggered every time the parent object is loaded into the browser: when the

page/master is first loaded; when the page is refreshed; etc.

To view the events that are available for various objects, start a new page in your

project and place a few different widgets onto the page. To see the events that the

object exposes, select it on the drawing canvas, then click the Events tab located to

the right of the Properties Palette.

19

Figure 6: A Subset of the Events Available for Text Widgets

Events are a fundamental cornerstone of creating dynamic simulations using iRise,

so it is important that you become familiar with the various event types that iRise

makes available in your prototyping tool belt. We’ll be regularly working with events

in the coming recipes, so if you don’t have a basic understanding of the types that

are exposed at what they can do, it is recommended that you review the online Help

content provided with the iRise Studio application.

Since iRise is not truly a programming environment (with the notable exception of

the new iBloc object, which is described later in this document), some important

limitations exist that don’t when working with a traditional programming language.

It is also important to have a solid understanding of these limitations, and your

awareness of them should guide decisions when figuring out how to perform various

simulation tasks within iRise. The most important (and unfortunate) limitation is

that as opposed to a programming language, a single iRise event can only be

controlled by a single variable for a given object. This means, for example, that you

can’t setup decision logic (If/Then/Else sorts of statements) that perform different

actions depending on whether a different variable is specified: in iRise, you’re limited

to an all or nothing reaction limited to a single variable. You can, of course, define

multiple decision branches for that single variable: for example, when loading a

page, one of several different view states can be invoked using the On Load event

that branches depending on the current value associated with the passed variable.

As objects and events are fundamental to creating robust simulations in iRise, we’ll

be visiting these friends often in the coming recipes: become familiar with their

basics before moving on to the recipes that follow by reviewing one or more of the

training resources mentioned at the start of this document in the Introduction.

Working with Data

Pass Datasheet Data to a Select Widget

In many projects, multiple project pages expose selection widgets with identical list

options. If these lists have many options, the process of recreating the selection

values from list to list can be tedious and time-consuming. Of course you can always

copy an existing selection widget from one page to another, or defined the widget in

a master, but in this exercise we’ll be exploring an alternative that leverages iRise

20

datasheets. In this exercise we’ll be using the sample States datasheet that ships

with iRise. If you haven’t done so already, return to the Introduction and repeat the

steps outlined in the Working with This Cookbook section. When you’re ready, we’ll

dive into associating this datasheet with a selection widget.

1. Import the sample States datasheet if you haven’t already done so.

2. Create a new page in your project.

3. Place a form widget onto your page.

4. From the Studio toolbar, click the Record toolbar icon, then click on the

canvas to the left of your page.

5. In the Choose Datasheet and Action dialog box, choose the State datasheet

and the Get Record radio button option, then click OK.

21

Your working environment should look like the following at this point:

6. Place a text object labeled State and a select widget within the boundary of

the form widget.

7. With the select widget selected, change the type to Dynamic List in the

Properties Palette.

22

8. Select the Get States record widget and drag it to the drop-down widget to

create a linkage between the two.

9. In the Select a Field dialog box, choose State Name, then click OK.

10. Launch your project by clicking the launch icon from within Studio to verify

the work done so far.

At this point, your rendered page should contain a functioning drop-down list

displaying the full name of each state.

23

Using Datasheets as Lookup Tables

Oftentimes, data within a simulation needs to be displayed in a variety of ways. For

example, sometimes within an application you might want to display the full name of

a state, and at other times simply the state abbreviation. The full state name might

be exposed in a select widget, but due to space or other constraints it might be

valuable to present the user with the abbreviated version in another UI component.

In these situations, datasheets can function as lookup tables, where a lookup value

can be substituted with another value from a datasheet based on a common lookup

key.

In this recipe, we’ll be building on the work started in the previous one. If you

haven’t already worked through those steps, do so before proceeding.

To Use a Datasheet as a Lookup Table:

1. Create a copy of the project drawing containing the state Select widget.

2. In the copied drawing, place a text widget comprised of the following string:

“The abbreviation of the state you selected is:”

3. Double-click on the page to the right of the text widget you just created and

enter the following string: “[state]”.

4. Select the Get States widget, then drag and drop it onto the [state] text

widget.

5. With the Get States widget still selected, select the Where radio button from

the Properties Palette.

24

6. In the where dialog box, click the Add Rule button.

7. Using the drop-down controls that are exposed, pacify the following values in

the Where dialog box, then click OK:

8. Add a Button widget below the two text strings.

9. Double-click the button to select its label, then type a value of “Reset”.

10. Click the Link toolbar button, then click on the right side of the page canvas

to place the link.

11. In the Set Destination dialog box, select the original page that you copied

earlier in step 1.

12. Select the Reset button, then drag and drop it onto the Link widget to

establish an On Click event.

When the following steps have been completed, your drawing canvas should

look like the following:

25

13. Select the button widget on the page, and write down the X, Y coordinate

values exposed through the Properties Palette.

We will be using these values to place a button at the exact same coordinate

location in the original drawing containing the State Select widget.

14. Return to the original project drawing you copied in step 1.

15. Place a button widget in the drawing, and with it still selected, use the

Properties Palette to enter the X, Y coordinate location you wrote down in

step 16.

16. Place a Clipboard widget at the right side of the page and drag and drop the

State selection widget to it.

17. From the context menu that is displayed, select State Name from the list,

then click OK.

18. Select the State Select widget, then click the Events tab in the Properties

Palette.

26

19. In the Show Events For drop-down, select the On Change event, then click

the Add button at the bottom of the palette.

20. In the context menu that is exposed, choose Action.

21. In the Set Page Action dialog box, choose the Submit Form action.

22. Place a Link action to the right of the Submit Form action and set it to

navigate to your copy of the current page that you created earlier in this

recipe.

27

23. Launch your project by clicking the launch icon from within Studio to verify

the work done so far.

When initially launched, the page should render with the State selection

widget enabled and the Reset button disabled.

When you select a state from the State select widget, the On-Change event is

fired, causing the form to submit and capturing the current state selection to

the clipboard. The On Change event then navigates to the copy of the

current page:

28

Clicking the Reset button invokes a Link event, navigating you back to the

original page and resetting the State selection widget to its default value.

Create a Dynamic Table

Dynamic tables are tables that are populated with external records stored in a

datasheet. They are extremely handy for in populating iRise table elements with

potentially large numbers of data records, translating into significant time savings in

formatting and laying out the table in iRise. Rather than manually inputting each of

the values into individual table cells within iRise, you define the records once in

either a datasheet or in an Excel spreadsheet. A single datasheet can be linked to

multiple data tables in one or more project files, each potentially displaying different

sets of data based on Where clause criteria. In this recipe we’ll import one of the

iRise sample datasheets that ship with the project and create a data table that is

populated with a subset of the table columns from the datasheet. In the next recipe,

we’ll build upon this work by adding a filtering condition that displays just a subset of

the records defined in this recipe.

To create a dynamic table:

1. From the tree at the left of iRise Studio, choose New > Datasheet.

29

2. While the new datasheet is still selected, type “Person” to change the default

datasheet name.

3. Select the Datasheet you just created from the tree.

4. Click the Import CSV button at the top of the Datasheet window.

5. In the CSV Import From dialog box, navigate to the Sample Datasheets

directory below your iRise installation.

By default, iRise is installed to C:\Program Files\iRise. If you installed to a

different directory, the datasheet samples are stored below the root folder as

follows: \\ installation directory\Studio\Sample Datasheets.

6. Select Person.csv, then click Open.

This should display a multi-column table within the Studio environment.

30

7. Create a new page in your project named Dynamic Datasheet, then select it

from the tree to make it active.

8. Drop a Form widget onto the page, then place a table object within the border

of the form.

9. In the Insert a Table dialog box, click the Data button, then enter the

following values into the dialog box:

a. Columns = 7

b. Header = 1

c. Footer = 0

31

10. Click OK.

11. Starting with the left-mouse column, double-click each cell in the top row and

enter the following values to specify the column labels:

a. User Name

b. First Name

c. Last Name

d. Address

e. City

f. State

g. Zip

12. Click the Record toolbar button, then click at the left of the drawing canvas to

place a record widget.

13. In the Choose Datasheet and Action dialog box, perform the following steps:

32

a. Select the Person datasheet from the list.

b. Select the Get Record radio button option.

c. Click OK.

14. In the data table, double-click each cell in the second row and input the

following variable placeholder labels:

a. [user]

b. [fname]

c. [lname]

d. [address]

e. [city]

f. [state]

g. [zip]

Data rows are visually represented in iRise with a red border to differentiate

them from regular tables. Any data row within a simulation is merely a

placeholder representation: individual table columns from a datasheet are

mapped to individual cells within the data table. When the simulation is

rendered in the browser, iRise retrieves all matching records from the

datasheet and displays them in the browser. In the next series of steps, we’ll

be defining the mapping between individual datasheet columns and our data

table.

15. Select the Get Record widget from the drawing canvas, and perform multiple

drag and drop operations to each data row cell to establish the following data

mappings:

a. Username = [user]

b. First Name = [fname]

c. Last Name = [lname]

d. Address = [address]

e. City = [city]

f. State = [state]

g. Zip = [zip]

33

16. Select the Form widget on the page, and make sure the following Properties

Palette values are specified:

a. Expand in Studio = Yes

b. Horizontal Scroll = No

c. Vertical Scroll = No

Container objects such as frames and sections all expose these settings. I

usually set the Horizontal Scroll and Vertical Scroll options to know (with a

few notable exceptions): even when all child objects appear to be comfortably

with in the margins of the parent container in Studio, these settings have an

annoying tendency to cause scrollbars to show up unexpectedly on various

controls when simulations are rendered in the browser.

17. Select the first row (column header row) on the page by holding the cursor at

the left-most edge of the row until an arrow cursor appears, then click on the

edge of the table.

When the entire row has been successfully selected, it will appear with a

green border within the Studio environment:

18. From the Text Toolbar, set the font size to 12 and click the Bold toolbar

button.

34

19. Launch your project by clicking the Launch toolbar icon to verify the work

you’ve done so far.

 You should see a table containing multiple data rows, similar to the following:

Create a Filter to Display a Subset of the Records Contained in a Data

Table

This recipe builds upon the previous one. If you have not already done so, complete

the steps in the previous recipe and return to this one when done.

In this recipe, we’ll create a selection widget that filters the data displayed in the

table to a specific match criterion. We’ll be searching for all datasheet records that

match the selection state of a State selection list. Any matching records will be

returned to the data table. If no matches are found, an alert is displayed. You can

extend the simulation if desired to include additional search criteria to match records

from a different table column.

To create a data table filter:

1. Select the label associated with each data line from the Get Record widget to

the data table, then choose Collapse.

35

The Collapse option is handy in temporarily getting rid of some of the

temporary clutter on an iRise page, making it easier to work with the

underlying page canvas. To revere a collapse operation, select the data lines

and choose Expand.

At the completion of this operation, your Studio environment should look like

the following:

2. Double-click an area above the left side of the data table to insert a text

widget and type the following string: “Display records from:”.

3. Place a selection widget to the right of the text you just entered.

4. With the selection widget selected, specify the following values in the

Properties palette:

a. Type = Standard List

b. Selection Items

i. All States

ii. AZ

iii. OH

36

LONG WINDED, OPTIONAL SIDEBAR: You are probably wondering why we

aren’t using a dynamic list and populating it with values from the State

datasheet. The primary reason is that in order to maintain the value selected

by the user from the selection list, we need to pass their selection to a

clipboard, and then back to the selection list. This unfortunately doesn’t work

well in this case, as we are already dynamically populating the list with values

from a datasheet. Once the user’s selection is passed to the clipboard, it

clobbers the datasheet list, resulting in a selection with only a single entry

available: the value the user just selected. I tried several alternative

approaches, including performing a view swap that alternated between the

user selection and the full list when the selection list is clicked, but none of

the solutions I tried worked quite as expected.

A robust solution that hopefully iRise will consider in the future is allowing

users to specify a named variable that already exists in the project as the

default value for dynamic selection lists. I eagerly await iris’s (hopefully

positive) response to this feature enhancement request! Side bar ended;

Denko off soap box.

5. Place two clipboards onto the drawing canvas.

6. Drag and drop the first clipboard to the State selection widget.

7. In the Select a Field dialog box, choose State, then click OK.

8. Drag and drop the State selection wizard to the second clipboard.

9. In the Select a Field dialog box, choose State, then click OK.

At this point, your Studio environment should look something like the

following:

37

10. With the State selection widget selected, switch to the Events tab in the

Properties Palette.

11. In Show Events For, select On Change, then click the Add button.

12. From the context menu that is revealed, choose the Action option.

13. From the Set Page Action dialog box, choose the Submit Form action.

14. From the project tree, right click the current page and choose Copy.

15. With the current page still selected, right click and choose Paste.

16. Select the pasted page, then right click and choose the Rename option.

17. Type in the following name: “Dynamic Datasheet 2”.

18. Select Dynamic Datasheet 2 from the project tree.

19. Select the Get Record widget from the left side of the drawing canvas.

20. In the Properties Palette, select the Where radio button option.

38

21. In the Where dialog box that is displayed, click the Add Rule button, then

specify the following rule:

22. Click OK.

23. Click the New button above the project tree, then choose the Decision option.

39

24. While the new object is still selected, type “All states?” to rename it.

25. Click the All States decision branch to select it.

26. Place a clipboard to the left and slightly above the decision diamond.

27. Drag and drop the clipboard to the diamond.

28. In the Select a Record or Field dialog box, specify the following values, then

click OK:

40

29. Place two link widgets to the right of the diamond, pointing to the following

pages:

a. Dynamic Datasheet

b. Dynamic Datasheet 2

30. In two separate operations, drag and drop the diamond to each of the page

links in turn.

31. In the Properties Palette, double click each listing in the Branches section in

turn to rename the default values as follows:

a. Dynamic Datasheet: “Yes”

b. Dynamic Datasheet 2: “No”

32. From the Properties Palette, click the Edit Rules button.

33. In the dialog box that is displayed, enter the following settings, then click the

x at the upper right of the dialog box to dismiss it:

41

This sets up the rules for the decision branch: if the user selects the All States

entry from the State selection dialog box, she will be returned to the Dynamic

Datasheet page. If she selects any other option, she remains on the Dynamic

Datasheet 2 page.

We’re now ready to hook up the last couple of pieces of logic to our recipe

and give it a taste.

34. From the project tree, select the Dynamic Datasheet page.

35. To the right of the Submit Form action, place a link pointing to Dynamic

Datasheet 2.

36. Drag and drop the Submit Form widget to the Dynamic Datasheet 2 page link

to establish a connection.

This completes the page logic for the first page: when the user changes a

value from the State selection control, the form is submitted (which captures

the value selected from the State list) and data flow is passed to Dynamic

Datasheet 2.

37. From the project tree, click Dynamic Datasheet 2 to open that page in Studio.

38. To the right of the Submit Form action, place a link pointing the All States

decision.

39. Drag and drop the Submit Form widget to the All States link to establish a

connection.

42

This step completes the logic for the second page: when the user changes the

page logic for the second page, the decision branch is invoked. If the user

selected the All States option, she is returned to the initial page. If another

option is selected, the user remains on the current page.

40. Select Dynamic Datasheet from the project tree.

41. Launch your project in your browser by clicking the Launch toolbar icon to

verify the work you’ve done so far.

Try toggling through the various options exposed through the State selection

widget and observe the filtering that occurs.

Save a Record to a Data Sheet

Datasheets are particularly useful in persisting user preferences/settings across

multiple editing sessions. Whereas clipboard data is only persistent across the

lifetime of a given browser session, datasheet records are maintained indefinitely

until the user decides to delete them. In this recipe, we’ll be creating a simple

simulation that accepts user input and saves it off to a datasheet for future recall.

The next series of recipes will share a common theme, borrowed from the Web

Solutions ABC quoting tool. We’ll cover all components of a data record lifecycle:

creating a new record; copying the record to use as a starting point in creating a new

record; updating an existing record; and deleting a record. This recipe will cover the

initial step of creating a record and saving it to a datasheet.

Rather than detail the various steps for building out the basic page elements, we’ll be

starting with a precooked page that contains the basic form elements, and simply be

building out the logic to hook up the required datasheet functionality. The materials

needed for the next three recipes can be found on the following shared drive

location:

1. If you haven’t already, download the starting files from the Design intranet.

2. From the project tree, navigate to and select the Locations page.

3. Place a clipboard widget to the right of the Location Information section.

43

4. Drag and drop the following widgets in the Location Information section to the

clipboard, and through the Select a Field dialog box, specify the following data

mappings for each control:

• Vacant Land selection widget = Vacant

• Address Line 1 text input widget = Mailing Address 1

• City text input widget = City

• State selection widget = State Name

• Zip Code text input widget = Zip

• Territory Code text input widget

At the completion of this operation, your Studio environment should look like

the following:

In this step, we’ve established data mappings for all required fields on the

page (those indicated by red asterisks). Mappings to the other field in this

section are not specified (mainly in the interest of keeping steps in this recipe

to a minimum, and to reduce clutter in the drawing to keep editing simpler).

OPTIONAL STEP FOR EXTRA CREDIT: Establish mappings for the

additional controls in this section using the following variable values:

• Address Line 2 text input widget = Mailing Address 2

• County = County

Hint: To complete this step, remember that you need to pass data both to

and from the controls.

5. Place a record widget to the right of the clipboard you placed earlier in this

recipe.

6. In the Choose Datasheet and Action dialog box, specify the following values:

44

7. Drag and drop the clipboard to the save record widget you just placed, then

choose the Send Data context menu option.

8. In the Select a Field dialog box, choose the Vacant variable.

9. Repeat steps 7 and 8, establishing data mappings between all required

variables except for State.

At the completion of this step, your Studio environment should look like the

following:

In the next series of steps, we’ll associate an action with the Add button that

submits the form, thus saving the state of all data flows, including outputting

the values captured from the clipboard to the datasheet via the save record

widget.

10. Place a Submit Form widget to the right and slightly above the Add button on

the drawing canvas.

11. Drag and drop the Add button to the Submit Form widget to establish an On

Click event relationship.

45

12. To the right of the Submit Form action, place a Clipboard.

13. Select the clipboard and enter the following values into the Properties Palette:

We will be using the Location Set variable to control some of the view logic

already established on the page.

14. Drag and drop from the Submit Form action to the clipboard to establish a

relationship.

15. Place a Link widget to the right of the Clipboard you placed in the previous

steps.

16. In the Set Destination dialog box, specify the following values:

46

The Refresh action reloads the current browser window. Since we’re saving

off our current data state via the Submit Form action, any captured data will

be refreshed and updated in the page when it is reloaded.

In the next series of steps, we’ll be adding a Get Record widget to retrieve all

records from the Locations datasheet, and establishing mappings between

predefined variable placeholders in the Location table at the top of the page.

17. Place a Record widget at the left of the page near the Location table, and

specify the following values in the Choose Datasheet and Action dialog box:

47

18. Click OK to dismiss the dialog box.

19. Drag and drop the Get Record widget to the [Address] text element in the

Location table.

20. From the Select a Field dialog box, choose Mailing Address 1.

21. Repeat steps 19 and 20 to define mappings between the following Location

table variable placeholders and their corresponding Locations table

equivalents:

• [City] = City

• [State] = State

• [Zip] = Zip

At the completion of this operation, your Studio environment should look

similar to the following:

Our final task in completing this recipe is to pass the State name from our

data clipboard to a Get Record action, retrieving the abbreviation associated

with the state name.

48

22. Place a Record widget above the Save Locations widget.

23. In the Choose Datasheet and Action dialog box, specify the following values,

then click OK:

24. With the Get Locations widget select, click the Where button from the

Properties Palette.

25. In the Where dialog box, confirm the following settings, then click OK:

49

26. Drag a drop the Get Locations widget to the Save Locations widget.

27. From the context menu that’s exposed, choose the Send Data option.

28. From the Select a Field dialog box, choose State, then click OK.

29. Launch your project in your browser by clicking the Launch toolbar icon to

verify the work you’ve done so far.

30. Enter the following values in the Location Information section, then click the

Add button.

If you have everything connected properly, this should submit the form and

save the data you entered to your datasheet, initiating a view changed based

on the On Load event associated with the Page widget based on the Location

Set value we passed to the clipboard connected to the submit form action

associated with the Add button.

50

Select the Locations datasheet from the project tree to verify that the data

has successfully been saved to your datasheet.

Update a Datasheet Record

This recipe builds upon the preceding one. Again, we’ll be starting with some

prebaked elements. The primary difference between saving a record vs. updating a

record is the type of record widget used. As many of the steps in updating a

datasheet are the same as for saving a datasheet, we’ll be skipping many of the

steps from the preceding exercise.

1. From the project tree, navigate to and select the Edit Location page.

2. Place a clipboard at the right side of the drawing canvas near the Location

Information section.

3. Drag-and-drop the following fields from the Location Information section to

establish the following data mappings:

a. Address Line 1 = Mailing Address 1

b. City = City

c. State = State Name

d. Zip Code = Zip

e. Territory Code = Territory Code

At the completion of this operation, your page should look like the following:

51

4. Drag-and-drop a record widget from the toolbar to the drawing canvas.

5. In the Choose Datasheet and Action dialog box, specify the following settings,

then click OK:

6. Drag-and-drop the clipboard widget you placed in step 2 to the update record

widget you just created.

7. From the context menu that is displayed, choose Send Data.

8. In the Select a Field dialog box, choose Mailing Address 1.

9. Repeat steps 6 through 8 to establish the following additional data mappings:

a. City

b. State Name

c. Zip

d. Territory Code

10. Drag-and-drop a record widget to the drawing canvas.

11. In the Choose Datasheet and Action dialog box, specify the following settings,

then click OK:

52

12. With the Get States record widget you just placed still selected, click the

Where button from the Properties Palette.

13. In the Where dialog box, click the Add Rule button, then specify the following

settings:

53

14. Click OK.

15. Drag-and-drop the Get States widget to the Update Locations widget.

16. From the context menu that is exposed, choose Send Data.

17. From the Select a Field dialog box, choose State.

At the completion of this operation, your drawing canvas should look like the

following:

18. Place a Submit Form widget to the right of the Save button.

19. Drag-and-drop the Save button to the Submit Form widget you just placed.

20. Drag-and-drop the Submit Form widget to the Update Locations record

widget.

21. To the right of the Update Locations widget, place a Link widget.

22. In the Set Destination dialog box, choose the Locations page, then click Done.

23. Drag-and-drop the Update Locations widget to the Locations link you just

created.

54

At the completion of this operation your page should look like the following:

24. From the project tree, choose the Locations 2 page.

25. Place a clipboard to the right of the Edit button.

26. With the clipboard widget selected, specify the following value in the

Properties Palette:

27. Place a link widget to the right of the clipboard you placed in step 25.

55

28. In the Set Destination dialog box, choose the Edit Location page, then click

Done.

29. Drag-and-drop the Edit button to the clipboard created in step 25.

30. From the context menu that is displayed, choose Create Navigation.

31. Drag-and-drop from the clipboard to the Edit Location link widget.

At the completion of this operation, your page should look like the following:

32. With the Locations 2 page still selected from the project tree, click the Launch

button to verify your work to this point.

33. In the browser window, click the Edit button.

34. Edit the Address Line 1 field to “888 San Marin Drive”, then click Save.

56

35. From the project tree, click the Locations datasheet to verify that it was

updated with your edit.

Performing Calculations and Conversions

Create a Field That Displays the Current Date

Oftentimes, you’ll need to simulate an application that defaults a date field to the

current date (for example, when creating a new online quote, the Web Solutions

application defaults the Effective Date field to the current date. iRise provides some

rudimentary date calculation widgets, including a number that can be used for

calculating the current date. In the following recipe, we’ll be creating some logic

widgets that return and apply formatting to the current date, and then display the

results of this logic in an associated page widget. We’ll be using the pages On Load

event to trigger calculation of the date.

To report the current date in a text widget:

1. Create a new page in your current project.

2. Place two text widgets with the following text values onto your page:

57

a. Text widget 1: The current date is:

b. Text widget 2: [date]

3. Click the Operator toolbar button, then click to the left of the page to place

the operator on the drawing canvas.

4. In the context menu that is exposed, select the Until > Date > Current

option.

At the completion of this operation, your page canvas should look as depicted

in the following screenshot.

58

5. Click the Constant toolbar button, then click to the left of the page to place

the operator on the drawing canvas slightly above and to the left of the

Date.Current widget you placed in the preceding steps.

6. Select the Constant you just placed on the drawing canvas.

7. Optional (but recommended) step: provide a meaningful name for your

Constant using the Properties Palette. For this example, I’m naming my

constant Current Date Format.

59

8. In the Domain Values section of the Properties Palette, specify the following

string to set the date format: MM/dd/yyyy.

The preceding two steps define a new constant named Current Date Format,

and specify that the date will be presented as a two digit month (MM)

followed by a backward slash separator; a two digit day (dd) followed by a

backward slash separator; and a four digit year (yyyy). If desired, you can

substitute another separator (for example, a “-“ character) or set your date to

display more or fewer digits, or even right out the name of the month. Since

iRise internally uses the backward slash for the included Date widget, you

usually will achieve more predictable results with less effort if you stick with

this format.

At the completion of the preceding two steps, your drawing canvas should

look similar to the following:

60

9. Select the Current Date Format constant, then drag it to the current date

widget to establish a data flow relationship.

10. Select the current date widget, then drag and drop it on the [date] text object

on the page.

11. In the Select a Field dialog box, define a new variable by typing Current Date

in the Name field, then click the OK button.

61

Your application environment at this point should look similar to the following:

12. Click the Launch toolbar button to load your completed web page into your

browser.

At this point, your web page should render, displaying the current date in the

specified format.

62

Create a Field That Adds One to the Year of the Current Date

While the following recipe has many more steps then the previous Current Date

recipe and may initially look quite complicated, you can breathe easy and rest

assured that it is only slightly more complicated in actual practice. We’ll once again

be working with The Current Date widget, but this time rather than constants, we’ll

be working with the User Defined widget. To perform our recipe magic, we’ll need to

create two Current Date widgets: one that will hold the month and day portion, and

one holding the current year. We’ll be using a new Expression widget to add one to

the current year, and then be piecing our date back together using the Text Add

widget.

1. Create a new page in your current project.

2. Place two text widgets with the following text values onto your page:

a. Text widget 1: One year from today is:

b. Text widget 2: [date]

63

3. Click the Operator toolbar button, then click to the left of the page to place

the operator on the drawing canvas.

4. In the context menu that is exposed, select the Until > Date > Current

option.

At the completion of this operation, your page canvas should look as depicted

in the following screenshot.

Next, we’ll be defining the format for the date. Since we are adding 1 to the

current year, we need to split the current date into two pieces: one component

64

for the month and day, and another for the year. We’ll be using some new

widgets to complete this operation. But first, let’s place one additional Current

Date widget which will hold just the year portion of our date.

5. Right-click the Current Date widget you placed on the canvas, then choose

the Copy context menu option.

6. Right-click on the canvas slightly above and to the right of the Current Date

widget you previously placed, then choose Paste.

7. Right-click on the canvas slightly above and to the right of the Current Date

widget you previously placed, then choose Paste.

At the completion of this operation, your page canvas should look as depicted

in the following screenshot.

65

8. Click the Operator toolbar button, then click a region on the drawing canvas

slightly above the Current Date widget you just placed.

9. Select the User Defined context menu option.

66

10. Select the User Defined widget, then drag and drop it on top of the new

Current Date widget.

11. Select the Send Data context menu option.

12. In the Select a Field dialog box, enter Date Format in the name field, then

click OK.

67

13. Copy and paste the UserDefined widget to a location slightly above the other

Current Date widget.

14. With the User Defined widget you just placed selected, enter MM/dd/in the

Date Format field on the Properties Palette.

68

15. Select the other User Defined widget and enter yyyy in the Date Format field

on the Properties Palette.

16. Select the other User Defined widget, then drag and drop it on top of the new

Current Date widget.

17. Select the Send Data context menu option.

18. In the Select a Field dialog box, select Date Format from the list of available

fields, then click OK.

At this point, your drawing canvas should look like the following.

69

Next, we’ll place an Expression widget to add 1 to the current year.

19. Select the Expression button from the toolbar.

20. Click on the drawing canvas slightly below the upper Current Date widget.

70

21. Select the upper of the two Current Date widgets, then drag and drop it on

the Expression widget.

22. Select the Send Data context menu option.

23. In the Select a Field dialog box, enter “Year + 1” in the Name field, then click

OK.

71

24. With the Expression widget you just placed selected, click the Build

Expression button from the Properties Palette.

25. In the Build Expression dialog box, complete the following steps:

a. Click the NextYear button.

b. Click the + button.

c. Click the 1 button.

d. Enter 0 in the Precision field, then click OK.

72

Next we’ll be using a new widget to add back together the two portions of the

date that you’d previously split apart.

26. Click the Operator toolbar button, then click a region on the drawing canvas

slightly below the Expression widget.

27. From the context menu, select Util > Text > Add.

73

At this point your drawing should look something like this:

28. Drag and drop the lower Current Date widget to the Text Add widget, then

choose Send Data.

29. In the Select a Field dialog box, enter Month and Day in the Name field, then

click OK.

74

30. Drag and drop the Expression widget onto the Text Add widget, then choose

Send Data.

31. In the Select a Field dialog box, choose Next Year from the list, then click OK.

32. Drag and drop the Text Add widget onto the [date] text widget on the page.

33. Enter New Date in the Name field of the Select a Field dialog box, then click

OK.

75

34. Click the Launch toolbar button to load your completed web page into your

browser.

At this point, your web page should render, displaying the current date with

one year added to it.

Miscellaneous Routines

Using Show/Hide Widgets as an Alternative to Views

Views are a powerful mechanism within iRise for toggling between a variety of

different visual representations of a set of controls, but they are not without

drawbacks or limitations. They tend to work best when toggling state information for

a set of identical controls and are most difficult and problematic to work with when

switching from an empty view to a view that dynamically displays controls that were

previously hidden. When working with empty views, it is quite easy to forget to

“reset” the hidden view to a height of 0, resulting in pages within your scenario with

large amounts of empty space.

Fortunately, however, iRise often provides a multitude of different mechanisms for

accomplishing a given task, and the Show/Hide Widgets capabilities work very well

for a variety of dynamic view interactions.

The example described here utilizes named table rows, but you can also experiment

with this interaction for different types of widgets.

To use show/hide widgets as a replacement for alternative views

1. Create a simple page layout using a Table widget as the basic building block.

76

2. Identify a row within this table that you would like to hide when the page is

initially loaded:

a. Select the row from within iRise.

b. From the Properties inspector, give a meaningful name to this row:

you will reference this name in a subsequent step to make the row

visible.

c. From the Properties inspector, check the Hide in Browser check box.

3. Place a Check Box widget

Preserving State of Radio Button Settings

Oftentimes within a simulation, users will submit a form from a given page and

return to that same page to perform further edits. For example, both the Search by

Payor and Search by Policy work-flows require the user to enter a search string, and

any matching results are returned to the calling search page. It is desirable under

this circumstance to maintain the state of any radio button settings, such that they

can be restored when the user is returned back to the page.

To preserve the state of radio button settings on a page

1. Create a clipboard, and pass data to it from one of the options from within the

radio button group1.

2. Create a Submit Form action and associate it with a form widget (e.g., a

button).

3. Create a Navigation link from the Submit Form action that returns you to the

current page.

4. Create a second clipboard which passes the data variable defined in step 1

back to the radio button group.

1 While somewhat counter-intuitive, you do not need to pass data from each of the

radio button options within a radio button group – in fact, iRise blocks you from

doing this.

	Cover

	Table of Contents

	Fireman's Fund iRise Cookbook

	Working with This Cookbook

	General Best Practices

	iRise Objects and Event Types

	Working with Data

	Pass Datasheet Data to a Select Widget

	Using Datasheets as Lookup Tables

	Create a Dynamic Table

	Create a Filter to Display a Subset of the Records Contained in a Data Table

	Save a Record to a Data Sheet

	Update a Datasheet Record

	Performing Calculations and Conversions

	Create a Field That Displays the Current Date

	Create a Field That Adds One to the Year of the Current Date

	Miscellaneous Routines

	Using Show/Hide Widgets as an Alternative to Views

	Preserving State of Radio Button Settings

